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Details of Data Pre-processing and Training
The resolution of raw images in ETH-XGaze (Zhang et al.
2020) is 6Kx4K. We first normalize the raw images using the
method in (Zhang et al. 2020) and get the normalized head
poses and gaze directions. The normalized distance between
the camera and the center of the face is fixed at 950mm
and the focal length in the normalized camera projection
matrice is set to 1600. To align the data format with Live3D
(Trevithick et al. 2023) and EG3D (Chan et al. 2022), we
resize the normalized images to 512x512 and estimate camera
poses using the model in (Deng et al. 2019). To apply our
mask-guided 2D constraint, we use the face parsing model
(Yu et al. 2018) to segment the whole and the eye region. We
use the detected landmarks (Bulat and Tzimiropoulos 2017)
to do the segmentation when the face parsing model does not
work when processing some challenging images.

The personalized test set in ETH-XGaze includes 200
labeled images for each subject. We split the personalized
test set into an input group and a target group following
GazeNeRF (Ruzzi et al. 2023). The input group contains 100
images for each subject and the target group includes the
other 100 images. We train our model with 80 subjects in
the train set of ETH-XGaze first and then finetune the model
with images from the input group for 10 epochs. We generate
the images in the target group during evaluation.

Analysis of Redirection Accuracy
in Pitch and Yaw Directions

To further analyze the performance of our model in differ-
ent directions, we calculated gaze errors in pitch and yaw
directions and present the error maps in degrees in Fig. 1.
The mean errors in pitch and yaw directions are 5.085◦ and
5.989◦, respectively. Pitch redirection error increases at larger
gaze angles due to decreasing data density in the ETH-XGaze
dataset. Yaw redirection error rises as the pitch angle shifts
from positive to negative, as downward gaze reduces eyeball
visibility, making yaw redirection more challenging. Regard-
ing the influence of input pitch angle, blurring is observed
in the generated eye region at extreme pitch angles, due to
limited training data with large pitch angles.
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Figure 1: Error maps in pitch and yaw directions.

Improve Gaze Estimation
We conducted an evaluation of our gaze estimation model
using the ETH-XGaze dataset. Initially, we trained the gaze
estimator on the training set provided by ETH-XGaze. Subse-
quently, we performed an evaluation of the model by testing it
on the person-specific test set in the ETH-XGaze dataset. We
generated 100 images for each subject in the person-specific
set. Then we implemented a fine-tuning process utilizing the
synthesized images. The gaze error rate was significantly
reduced from 5.975◦ to 4.758◦. This notable improvement in
accuracy underscores the efficacy of our model and highlights
its potential for precise gaze estimation.

Ablations on Cross-Attention Fusion and
Triplane Decoder

To demonstrate the effectiveness of our network design, we
conducted extra ablation studies on two key components: the
cross-attention fusion and the triplane decoder. For the abla-
tion, we replaced the cross-attention module with a simple
concatenation operation and the triplane decoder with conven-
tional convolutional layers. For each study, we retrained the
model and evaluated its performance on the person-specific
set of the ETH-XGaze dataset. The results, presented in Table
1, show that ablating the cross-attention module significantly
decreases performance. This suggests that simple concate-
nation is insufficient for effectively fusing gaze embeddings
and facial features, which is crucial for accurate gaze redirec-
tion based on the input gaze prompt. Furthermore, removing
the triplane decoder caused the model to fail to converge,
highlighting the importance of the triplane decoder for suc-
cessfully decoding 3D facial information from the triplane
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Figure 2: Additional visualization of generated images from
ETH-XGaze with our RTGaze, ST-ED, HeadNeRF, and
GazeNeRF. The background is eliminated using face masks.
Our model can generate photo-realistic images with exten-
sive details. In contrast, ST-ED struggles to preserve identity
information. HeadNeRF and GazeNeRF face challenges in
maintaining facial details.

representation.

Gaze↓ FID↓ ID↑
w/o Cro. 21.188 48.574 56.566
w/o Tri. Null Null Null
Ours 9.047 38.346 60.708

Table 1: Ablation on cross-attention fusion and triplane de-
coder.

Details of Gaze-Controllable Facial
Representation

The low-frequency encoder Fl includes a pre-trained
DeepLabV3 network and a vision transformer encoder. The
vision transformer encoder consists of 2 transformer layers
with 4 heads and a hidden size of 1024. This structure is able
to capture the global context of the input image and extract
low-frequency features (Bai et al. 2025). The high-frequency
encoder Fh is a convolutional neural network with 6 convo-
lutional layers and convolutional neural network has been
verified to be effective in capturing high-frequency details
(Wang et al. 2020; Bai et al. 2025). The fist convolutional
layer has a stride of 2 and other layers have a stride of 1. All
the layers have a kernel size of 3x3 with 128 channels.

Additional Qualitative Results
In Fig. 2, we show additional qualitative results comparing
our model to the SOTA methods. All the models are evalu-
ated on the personalized test set of the ETH-XGaze dataset.

Figure 3: Additional visualization of generated images under
novel gazes and novel views. The upper part is the generated
images under novel gazes which are from left to right. The
lower part is the generated results under novel views. Our
model generates 3D faces with controllable gazes from a
single image, producing photorealistic results across diverse
head poses and gaze directions while maintaining 3D and
gaze consistency.

Our model generates images with superior quality while ST-
ED (Zheng et al. 2020) encounters difficulties in preserving
identity information and both HeadNeRF (Hong et al. 2022)
and GazeNeRF (Ruzzi et al. 2023) struggle to retain facial
details.

In Fig. 3, we show additional qualitative results of gen-
eration under novel gazes and novel views. Our model can
generate 3D faces with controllable gazes from a single in-
put image. It produces photorealistic face images across a
wide range of head poses and gaze directions. The results
under novel viewpoints demonstrate the model’s strong 3D
consistency throughout the generation process. Additionally,
its capability to produce consistent gaze images is validated
by the results under novel gaze directions.
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