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Figure 1. 3D-aware gaze redirection results from our proposed LiveGaze, which generates photo-realistic face images under novel gazes
and views with good 3D consistency in real time. Compared to the state-of-the-art 3D-aware gaze redirection method GazeNeRF [33], which
requires approximately one minute during inference, our approach achieves real-time performance at 60ms while maintaining superior
image quality.

Abstract

Gaze redirection methods aim to generate realistic human001
face images with controllable eye movement. Recent methods002
usually struggle with good 3D consistency or have limited003
efficiency and quality, thereby limiting their applications. In004
this work, we present a real-time and high-quality gaze direc-005
tion method. Our method leverages recent advancements in006
real-time radiance fields and fuses gaze with high-frequency007
features for redirection through cross-attention mechanism.008
Consequently, we distill a lightweight module from a 3D009
portrait generator, which provides prior knowledge of face010
geometry. The final redirected image is attained via differen-011
tiable volume rendering. We evaluate LiveGaze qualitatively012
and quantitatively on ETH-XGaze dataset and it outperforms013
the state of the art in both efficiency and image quality. Our014

system achieves real-time 3D-aware gaze redirection with a 015
feedforward network (i.e., ≈ 0.06 sec/image), 1000× faster 016
than the SOTA 3D-aware method. 1 017

1. Introduction 018

Gaze is one of the most important facial features and it 019
conveys human attention and intention in interaction. Gaze 020
redirection involves redirecting the gaze of a face image to 021
a given target direction without changing the identity. It 022
has various applications including virtual reality [14, 27, 30, 023
47, 48], digital human [10, 16, 21, 36] and CG film-making 024
[5, 37, 41]. Besides, it is also used to generate training data 025
for downstream tasks such as gaze estimation as gaze data 026

1Upon publication of this paper, we will release the code and dataset for
research use
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collection is complex and time-consuming [39].027

Existing gaze redirection methods can be broadly divided028
into two categories: 2D-based and 3D-based, depending029
on whether they incorporate 3D representations. 2D-based030
methods achieve gaze redirection either by warping pixels031
in the input image [12] or by generating new gaze images032
through deep generative models such as Generative Adver-033
sarial Networks (GANs) [13, 18], encoder-decoder networks034
[31], and Variational Autoencoders (VAEs) [49]. While ef-035
fective to some extent, these methods do not capture the036
inherently 3D nature of gaze redirection, resulting in subop-037
timal performance under larger head poses.038

3D-based methods, on the other hand, construct a 3D039
representation of each input face image using techniques040
like the neural radiance field (NeRF) [29]. Once trained,041
these models can generate a full 3D face and, by adjusting042
camera poses, produce images with varied head orientations,043
ensuring strong 3D consistency across a wide range of poses.044
Among these, GazeNeRF [33] is the state-of-the-art, employ-045
ing two separate multilayer perceptrons (MLPs) to model the046
radiance fields for the face and eyes independently. GazeN-047
eRF generates novel views using latent codes and gaze labels,048
but during inference, it requires fine-tuning and updating049
learnable latent codes before rendering [15, 33], a process050
that is time-consuming and delays gaze redirection. Balanc-051
ing 3D consistency with real-time performance, therefore,052
remains an open challenge in gaze redirection.053

In this paper, we tackle the challenge of real-time 3D-054
aware gaze redirection by distilling a 3D portrait generator055
into a lightweight module [7, 35] that requires only a single056
image as input. We introduce a novel method, LiveGaze, for057
real-time gaze redirection with 3D awareness.058

As illustrated in Fig. 2, our streamlined module takes059
an image and gaze label as inputs. Drawing inspiration060
from Stable Diffusion [32], we incorporate the gaze label061
by merging it with image features through cross-attention062
mechanism. The fused features are then encoded into a063
triplane representation [7] for volumetric rendering, enabling064
the model to be trained with a reconstruction loss. Direct065
optimization of appearance and shape in a compact model is066
challenging, particularly when deriving 3D geometry from067
a single image [24, 25]. To address this, we distill the prior068
knowledge of face geometry from a 3D portrait generator069
into our module, optimizing appearance and adjusting shape070
as needed.071

Our system achieves real-time 3D-aware gaze redirection072
through a feedforward network, processing each frame in073
just 61ms on a standard consumer GPU. Extensive quanti-074
tative and qualitative evaluations validate our approach, and075
a series of ablation studies confirm the effectiveness of our076
design choices. Compared with existing methods [15, 33],077
LiveGaze offers superior image quality with a significant078
boost in inference speed.079

In summary, our contributions are as follows: 080

1. We present a lightweight, real-time 3D-aware gaze redi- 081
rection module that utilizes a cross-attention-based gaze 082
fusion mechanism, maintaining strong 3D consistency. 083

2. We introduce the distillation of 3D face priors from 3D 084
GANs into a lightweight module, enhancing 3D face 085
generation quality. 086

3. Our method, tested on the ETH-XGaze dataset, surpasses 087
state-of-the-art methods in both inference speed and im- 088
age quality. 089

2. Related Work 090

2.1. Gaze Rediretion 091

Gaze redirection methods can generally be divided into two 092
categories: 2D-based methods and 3D-based methods. 093

Among 2D-based methods, Deepwarp [12] employs warp- 094
ing maps learned from pairs of eye images with different 095
gaze directions, which requires extensive annotated data. To 096
reduce this reliance on annotated real data, Yu et al. [44] 097
incorporate a pretrained gaze estimator with synthetic eye 098
images, further refined by Yu and Odobez [43] with an unsu- 099
pervised gaze representation learning network. GAN-based 100
approaches, such as the one proposed by He et al. [13], en- 101
able gaze redirection by leveraging generative models. FAZE 102
introduces an encoder-decoder framework that encodes eye 103
images into latent vectors, which are then manipulated with 104
rotation matrices to produce synthetic images featuring redi- 105
rected gaze. ST-ED [49] builds on this by disentangling 106
latent representations to perform both head and gaze redirec- 107
tion for full-face images, achieving highly accurate results. 108
Expanding on ST-ED, ReDirTrans [17] projects edited em- 109
beddings back into the original latent space, allowing for 110
attribute replacement with minimal impact on other features 111
and preserving the latent distribution. While effective, 2D- 112
based methods often struggle with 3D consistency, as they 113
lack an explicit 3D facial representation. 114

In contrast, 3D-based methods offer improved 3D consis- 115
tency. EyeNeRF [22] combines explicit surface modeling 116
for the eyeball with implicit volumetric representations of 117
surrounding eye structures, enabling high-fidelity gaze redi- 118
rection with photorealistic effects using a minimal setup of 119
lights and cameras. GazeNeRF [33] employs a two-stream 120
MLP architecture to separately model the face and eye re- 121
gions via neural radiance fields, allowing for independent 122
manipulation of the eyeball orientation. Additionally, Head- 123
NeRF [15] integrates gaze labels as conditional inputs to sup- 124
port gaze redirection. Despite their robust 3D consistency, 125
these methods often require complex, resource-intensive 126
models, limiting their real-time applicability. To address 127
these limitations, our proposed method, LiveGaze, distills 128
3D facial geometry from 3D GANs into a streamlined, 3D- 129
aware gaze redirection module, achieving real-time perfor- 130
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mance with minimal computational overhead.131

2.2. 3D-Aware One-Shot Portrait Generation132

Keeping good 3D consistency is challenging when generat-133
ing a 3D-aware portrait from one single image. Efficient 3D134
representations, like neural radiance fields [29] or 3D meshes135
[23], are commonly used to impose geometric constraints136
on neural rendering to enhance view consistency. ROME137
[28] is a mesh-based method that estimates the head mesh138
as well as the neural texture. Although it achieves good139
view consistency, the limited resolution of polygonal meshes140
restricts the neural renderer’s ability to produce high-fidelity141
geometric and appearance details.142

HeadNeRF [15] and MofaNeRF [50] support direct con-143
trol of the head pose of the generated images with NeRF-144
based parametric model. However, these methods require145
intensive test-time optimization, limiting their usability in146
real-time applications, and often struggle to preserve the147
source identity due to the use of compact latent vectors.148
EG3D [7] utilizes an advanced triplane-based neural field149
representation that efficiently encodes the 3D structure and150
appearance of an avatar’s head, enabling detailed and struc-151
tured 3D modeling. However, it still needs to update the152
latent codes for one specific head via GAN inversion [1–3].153

Live3D [35] distills a lightweight neural network from154
EG3D to realize 3D portrait generation from one single im-155
age in real time. Our work relies on the structure of Live3D156
and inherits its real-time performance. While working effi-157
ciently, it lacks the disentanglement between the appearance158
and gaze direction and is unable to impose various driving159
gazes onto the input. To address the limitation, we propose160
a gaze fusion module to inject gaze as a condition for gaze161
controlling and train the model with pairs of images with162
different gazes. In addition, we further propose a distillation163
model of 3D face priors from the pre-trained Live3D model164
[35] to supplement shape information.165

3. Method166

3.1. Preliminary167

3D-aware GANs [7, 35] have proven effective in generat-168
ing highly realistic 3D images by leveraging collections of169
single-view images. To improve computational efficiency170
and image quality of 3D GANs, EG3D [7] proposes an effi-171
cient triplane-based 3D representation for portrait reconstruc-172
tion. However, EG3D must do GAN inversion before 3D173
reconstruction given an image. The GAN inversion makes174
the whole inference process slow. To address this limita-175
tion, we rely on Live3D [35], a state-of-the-art single-image176
3D portrait reconstruction model that distills a lightweight177
module from the pre-trained EG3D model. Live3D takes an178
image I as input instead of latent codes. It encodes the input179
image with two encoders, Eh and El, to extract the features180

with high frequency and low frequency. Then, a ViT-based 181
decoder Etri is used to transfer the concatenated features 182
into the triplane T: 183

T = Etri (Eh(I),El(I)) . (1) 184

The triplane T is followed with a volume renderer to render 185
low-resolution images under the given camera pose c. High- 186
resolution images are obtained via a super-resolution module 187
which is the same as EG3D [7]. 188

3.2. Network Architecture 189

The two encoders, Eh and El, are designed to extract high- 190
frequency features and low-frequency features from the input 191
image in Live3D. 3DPE [4] analyzes the two kinds of fea- 192
tures by separately disabling the features and visualizing 193
them. They find the features from Eh keep appearance in- 194
formation while losing the shape and the features from El 195
retain the geometry while fail to capture the appearance. The 196
human eyeball is close to a sphere and the geometric changes 197
in eye region are tiny. Compared with geometric changes, 198
redirecting gaze usually causes bigger changes in appear- 199
ance. To this end, we choose to fuse the gaze condition 200
with the high-frequency features from Eh to modify the face 201
appearance and leave face geometry unchanged. 202

Injecting Gaze as Condition. Given a source image Is 203
and a gaze label g, we first use the gaze label encoder Eg to 204
create gaze embeddings whose dimensions are aligned with 205
the high-frequency features Fh. Inspired by Stable Diffusion 206
[32], we fuse the gaze embedding and Fh via cross-attention 207
mechanism. Specifically, we add a cross-attention layer after 208
Eh to obtain the modified appearance features Fapp: 209

Fapp = CrossAttention (Eh(Is),Fh) , (2) 210

In the cross attention, Fh functions as the query, while Eg(g) 211
is used as both the key and value. The modified appearance 212
features Fapp and geometry feature Fgeo are subsequently 213
fed into the decoder Etri to infer the triplane Tg: 214

Tg = Etri (Fapp,Fgeo) , (3) 215

The gaze-redirected image Ig and the depth map Dg under 216
the target camera pose c are generated by a triplane renderer 217
G same as EG3D [7]: 218

Ig,Dg = G(Tg, c) . (4) 219

3.3. Distillation of 3D Face Prior 220

Directly optimizing appearance and shape from one single 221
image within a lightweight model is challenging since it 222
lacks information to constrain a 3D scene. Existing methods 223
generally generate multi-view images with 2D generation 224
models [24, 25] or utilize 3D meshes [8] to provide shape pri- 225
ors. However, the generated multi-view images do not match 226

3



CVPR
#9700

CVPR
#9700

CVPR 2025 Submission #9700. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

High-Frequency 
Encoder 𝑬𝒉

Low-Frequency 
Encoder 𝑬𝒍

Gaze Label 𝒈

Source Image 𝑰𝒔

Gaze Encoder 𝑬𝒈

𝑭𝒉

𝑭𝒈𝒆𝒐

Cross Atten. 𝑭𝒂𝒑𝒑

Triplane 
Decoder 𝑬𝒕𝒓𝒊

Triplane Feature

Rendering

Depth

Reconstruction

Frontal Image 𝑰𝒇

3D Face Prior

Triplane Feature

Rendering

Depth

Camera Pose 𝒄

Geometry Constraint

Mask-guided 2D 
Constraint

Frozen

Gaze Fusion Module (Sec. 3.2)

Distillation of 3D Face Prior (Sec. 3.3)
Training Objectives (Sec. 3.4)

Traget Image 𝑰𝒈𝒕

Figure 2. Overview of the LiveGaze pipeline. During training, our model takes three inputs: a gaze label g, a source image Is, and a frontal
image If . First, features with different frequencies are extracted from Is using two encoders, Eh and El. g is processed by a gaze encoder
Eg , and the resulting gaze embedding is fused with the high-frequency features Fh via cross-attention mechanism to condition the model on
gaze direction. The low-frequency features Fgeo are then concatenated with the fused features Fapp, forming the final input to the triplane
decoder Etri, which generates a 3D face representation in the form of a triplane. This triplane representation is used to render the final
gaze-redirected image and the corresponding depth map under the target camera pose c. The target image Igt provides a mask-guided 2D
constraint along the eye mask. Additionally, geometry constraints are incorporated by distilling prior knowledge of 3D face geometry from a
pre-trained 3D GANs, which takes If as input and outputs the reference depth map. During inference, our model is capable of performing
real-time 3D-aware gaze redirection using just a single source image and gaze labels.

each other in most cases and result in poor reconstruction per-227
formance. While mesh priors are generally reasonable, face228
tracking is time-consuming. The mesh priors also have the229
low resolution issue which limits the performance of recon-230
structing details and most meshs obtained via face tracking231
only cover face region regardless of the hair region. Instead,232
we utilize the pre-trained Live3D [35], a state-of-the-art 3D233
portrait generation model, to generate 3D face prior. We234
find Live3D has the best performance when the face in the235
input image is oriented frontally. Specifically, we input a236
frontal image If whose identity and gaze are same as the237
target image Igt to a pre-trained Live3D model and obtain238
the depth map Dgt under the target camera pose c:239

Dgt = Live3D (If , c) , (5)240

Thanks to its good efficiency and the ability to generate high-241
resolution depth maps, we are able to obtain the detailed 3D242
face prior in real time. We formulate a geometry constraint to243
distill prior knowledge of 3D face shapes into our lightweight244
module. The 3D face prior guarantees the geometry quality245
of learned 3D faces and alleviates the complexity in training246
the model.247

3.4. Training Objectives 248

We train the model using a pair of images (Is and Igt) with 249
the same identity and different gazes. The 3D face prior is 250
obtained from an additional frontal image If with the same 251
identity and gaze as Igt. We optimize our model using the 252
following objective function: 253

L = λRLR + λDLD + λPLP , (6) 254

where LR, LD, LP represent the reconstruction loss, depth 255
loss, and perceptual loss, respectively. As illustrated in 256
Fig. 2, the reconstruction loss defines our mask-guided 2D 257
constraint and the depth loss builds our geometry constraint. 258

Mask-Guided 2D Reconstruction Loss. To achieve real- 259
istic gaze redirection, we introduce a 2D reconstruction loss 260
that minimizes the differences between the generated image 261
Ig and the target image Igt in pixel level. To improve the 262
generation quality of eyes, we apply a face region mask and 263
an eye region mask to the reconstruction loss and enhance 264
eye region reconstruction by setting the loss in eye region 265
with a larger weight: 266

LR = λRf
LRf

+ λRe
LRe

, (7) 267
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where LRf
and LRe stand for face region reconstruction268

loss and eye region reconstruction loss respectively. We set269
λRe

> λRf
in our case.270

The face region reconstruction loss LRf
is formulated as:271

LRf
=

1

|Mf ⊙ Igt|
∥Mf ⊙ (Ig − Igt)∥1 , (8)272

where Mf is the face region mask and ⊙ denotes the pixel-273
wise Hadamard product operator. And the eye region recon-274
struction loss LRe is formulated as:275

LRe =
1

|Me ⊙ Igt|
∥Me ⊙ (Ig − Igt)∥1 , (9)276

where Me is the eye region mask.277
Depth Loss. To distill the 3D face prior into our278

lightweight module, we utilize the depth map Dgt from279
pre-trained Live3D to supervise the generated depth map Dg280
of the redirected face:281

LD = ∥Dg −Dgt∥1 . (10)282

Perceptual Loss. Perceptual loss [19] is to assess the283
quality of generated images by comparing high-level feature284
representations rather than pixel-level differences. It lever-285
ages a pre-trained network (such as VGG [34]) to capture286
the semantic and structural similarity between generated and287
target images. The models trained with perceptual loss tend288
to produce more visually realistic and detailed outputs by289
focusing on perceptual similarity, which better aligns with290
human visual perception. It has been widely used in im-291
age synthesis [15, 18] and approved as effective. We utilize292
a perceptual loss function to ensure perceptual alignment293
between the gaze-redirected image Ig and the target image294
Igt:295

LP =
∑
i

1

|ϕi (Igt)|
∥ϕi (Ig)− ϕi (Igt)∥1 , (11)296

where ϕi denotes the i-th layer of a VGG16 [34] network297
pre-trained on ImageNet [20].298

During inference, our model only takes a single 2D por-299
trait image and a specified gaze direction as input and pro-300
duces a gaze-redirected, triplane-based 3D face NeRF. Our301
model enables photorealistic view synthesis, allowing for302
highly realistic visualizations from multiple perspectives.303

4. Experiments304

To demonstrate the effectiveness of LiveGaze, we train our305
model on the ETH-XGaze [46] dataset and compare it to306
the state-of-the-art methods regarding efficiency and image307
quality both qualitatively and quantitatively. Then we show308
the results of novel view synthesis and gaze redirection.309
Finally, we validate our design choices via ablation studies.310

4.1. Experimental Setup 311

Dataset. We train our model on the ETH-XGaze dataset 312
which is widely used in gaze redirection task [33, 39] and 313
gaze estimation task [9, 38]. ETH-XGaze is a large-scale 314
gaze dataset comprising high-resolution images that capture 315
a wide range of head poses and gaze directions. It was col- 316
lected using a multi-camera setup under various lighting 317
conditions to enhance diversity. The training set includes 318
756K frames across 80 subjects, with each frame featur- 319
ing images from 18 distinct camera angles. Additionally, 320
a personalized test set contains 15 subjects, with each pro- 321
viding 200 images along with accurate ground truth gaze 322
labels for evaluation. Following GazeNeRF [33], we train 323
LiveGaze with 14.4K images from 10 frames per subject, 18 324
images with different views per frame, and 80 subjects on 325
the ETH-XGaze training set. We test all the models on the 326
personalized test set. 327

Data Preparation. We first normalize the data and resize 328
the face images into a resolution of 512x512 following the 329
method provided in ETH-XGaze [46]. Then we process the 330
normalized data following EG3D [7] to get the camera pose 331
for each image. To realize the mask-guided 2D constraint, 332
we generate face region masks and eye region masks with 333
face parsing models [42]. We convert the provided gaze 334
labels into pitch-yaw labels in the head coordinate system 335
for convenience of gaze controlling in 3D space. 336

Implementation Details. Our model is trained in an end- 337
to-end manner. We employ Adamw [26] as our optimizer 338
for whole model The learning rates are set to 1e−5 and 1e−5 339
for the encoding part and the rendering part respectively. We 340
train our model with a batch size of 4 for 50 epochs. We 341
empirically set the loss coefficients (LR, LD, LP ) in equa- 342
tion (6) to 1, 1, 0.8 respectively. The coefficients (LRf

and 343
LRe

) of in equation (7) are assigned with 1 and 2 separately. 344
It takes around 18 hours to train the whole model on two 345
NVIDIA A100 GPUs with 40GB memory. 346

Evaluation Metrics. We evaluate our model with vari- 347
ous metrics regarding model efficiency and generated image 348
quality. To evaluate the efficiency of models, we report 349
the encoding time and rendering time measured on a single 350
NVIDIA 3090 GPU in the inference stage with an average 351
of 100 samples. To evaluate the quality of generated image, 352
we report four widely used metrics including Structure Simi- 353
larity Index(SSIM) [40], Peak Signal-to-Noise Ratio(PSNR), 354
Learned Perceptual Image Patch Similarity(LPIPS) [45], and 355
Fréchet Inception Distance(FID). 356

4.2. Efficient 3D-Aware Gaze Redirection 357

Baseline Methods. We compare our model against the 358
state-of-the-art gaze redirection methods including 2D-based 359
method ST-ED [49] and 3D-based method GazeNeRF [33]. 360
ST-ED realizes gaze redirection on full-face images by dis- 361
entangling latent vectors with a novel self-transforming 362
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Figure 3. Qualitative comparisons. We conduct the comparison on ETH-XGaze dataset [46]. The background is removed by applying
face masks. The images generated from our LiveGaze are photo-realistic and have extensive details. ST-ED [49] encounters challenges in
preserving identity information while retaining the unmasked green background which is not found in 3D-based methods. HeadNeRF [15]
and GazeNeRF [33] suffer from losing facial details.

Table 1. Quantitative comparisons. We compare our LiveGaze model with other state-of-the-art methods based on image quality (SSIM,
PSNR, LPIPS, FID) and inference speed (Encode Time, Render Time, Total Time). For fairness, we report inference speed metrics only
for 3D methods. Image quality is evaluated on the personalized test set from ETH-XGaze, while inference speed is averaged over 100
samples on a single NVIDIA 3090 GPU. LiveGaze achieves real-time performance, processing each image in just 61ms, outperforming
other methods in most quality metrics and maintaining competitive SSIM scores. In contrast, HeadNeRF and GazeNeRF experience slower
performance due to increased encoding times caused by inversion.

Method 3D-based SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ Enc Time ↓ Rend Time ↓ Total Time ↓
ST-ED [49] % 0.726 17.530 0.300 115.020 - - -

HeadNeRF [15] ! 0.720 15.298 0.294 69.487 60s 0.058s 60.058s

GazeNeRF [33] ! 0.733 15.453 0.291 81.816 60s 0.060s 60.060s

Ours ! 0.715 19.007 0.272 38.346 0.026s 0.035s 0.061s

encoder-decoder architecture. GazeNeRF disentangles eye363
and face with two-stream MLPs and achieves 3D-aware gaze364
redirection based on NeRF representation. We also compare365
our model with HeadNeRF, a state-of-the-art NeRF-based366
3D portrait generation model. It is adapted to gaze redirec-367
tion task by simply adding two-dimension gaze labels as368
additional input.369

Qualitative Results. We show the qualitative results of370
the comparison with SOTA methods in Fig. 3. Following371
GazeNeRF [33], we pair the images with the different gazes372
from the personalized test set of ETH-XGaze to get the in-373
put images and target images. Our model takes one single374
image as well as a target gaze label as input and generates375
a photorealistic gaze-redirected image. As shown in Fig.376
3, ST-ED [49] suffers from preserving identity information377
tending to generate similar faces with different inputs. Be-378
sides, the results from ST-ED preserve the unmasked green379
background by mistake which is barely found in 3D-based380
methods (HeadNeRF, GazeNeRF, and our LiveGaze). 2D-381
based methods only learn a mapping from the input image382
and gaze label to the target image, while 3D-based methods383
are trained to build 3D face representations by integrating384
extensive multi-view information. It explains the robustness385

of 3D-based methods in handling defective inputs, which 386
verifies our choice of NeRF-based architecture. Even though 387
HeadNeRF [15] generates face images with the correct iden- 388
tity, it fails to redirect the gaze accurately and loses details 389
in eye regions. GazeNeRF [33] generates gaze-redirected 390
images whose gazes are aligned with target images, while 391
it struggles to preserve more facial details including facial 392
texture and fine-grained hair as shown in the red box on the 393
left. In contrast, our model can generate photorealistic face 394
images with extensive details while maintaining the ability 395
to redirect gaze accurately. Notably, our model works in real 396
time which outperforms all the existing 3D-aware methods. 397

Quantitative Results. We evaluate our model against 398
other state-of-the-art methods in terms of generated image 399
quality, using widely used metrics including SSIM, PSNR, 400
LPIPS, and FID. To ensure fairness, we compare inference 401
speed with other 3D-based methods, examining encoding 402
time, rendering time, and total time. Image quality is as- 403
sessed on the personalized test set from the ETH-XGaze 404
dataset, and inference speed is measured by averaging re- 405
sults from 100 samples on a single NVIDIA 3090 GPU. 406
For inference speed, LiveGaze achieves real-time perfor- 407
mance in both encoding and rendering stages, with a total 408
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Figure 4. Visualization of generated results under novel views and gazes. Our model is able to generate 3D faces with controllable gazes
using one single image as input. It can generate photorealistic face images in a large range of head pose and gaze directions. The results
under novel views show that our model keeps good 3D consistency in the generation process. Its ability to generate consistent gaze images is
also demonstrated by the results under novel gazes.

processing time of 61ms per image. This is attributed to the409
efficient triplane-based lightweight module distilled from a410
pre-trained 3D GAN [35], as well as the avoidance of the411
inversion process by requiring only a single image as input.412
In contrast, both HeadNeRF and GazeNeRF are based on413
the same parametric head model with NeRF representation.414
Their inputs are parameters of a specific head instead of415
images. Therefore, they have to conduct an inversion pro-416
cess to update the parameters with the input image, which417
takes a great amount of time like one minute. They suffer418
from slower encoding times due to the involved inversion419
process. Regarding image quality, LiveGaze beats the other420
SOTA methods on most metrics (PSNR, LPIPS, FID) and421
achieves a comparable result on SSIM. Notably, our model422
outperforms other methods on FID by a large margin.423

4.3. Face Rendering under Novel Views and Gazes424

To showcase the effectiveness of our model in generating425
3D-consistent results and achieving consistent gaze redirec-426
tion, we show the visualization of face rendering under novel427
views and gazes in Fig. 4. We set the gaze as looking for-428
ward during the generation under novel views and interpolate429

the gaze from left to right under a frontal view in the gen- 430
eration under novel gazes. The results demonstrate that our 431
model can generate face images with strong 3D consistency 432
and enables smooth and coherent gaze interpolation. The 433
good performance relies on our expressive triplane-based 434
3D face representation and the simple but effective gaze fu- 435
sion module. It is important to note that our model allows 436
the generation of photorealistic face images across a large 437
range of head poses and gaze directions. Please see the 438
supplementary materials for more details. 439

4.4. Ablation Study 440

Ablation on Feature Choices. LiveGaze separates high- 441
frequency features (related to appearance) and low-frequency 442
features (related to geometry) before mapping them to the 443
triplane representation. We perform an ablation study on 444
these features, and the results are shown in Fig. 5. Im- 445
ages generated using only low-frequency features appear 446
blurry across the entire image, with gaze redirection failing 447
to achieve accurate results. When the gaze embedding is 448
fused with low-frequency features, the geometry of the 3D 449
face becomes entangled with the input gaze labels. Ideally, 450
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Figure 5. Ablation on feature choices. The results highlight that us-
ing only low-frequency geometric features results in blurry images
and inaccurate gaze redirection. Fusing low-frequency features
with gaze embedding also causes unintended changes across the
entire face, making it challenging to isolate modifications to the
eye region alone. In contrast, incorporating high-frequency appear-
ance features with gaze embedding preserves stable face geometry,
enabling effective gaze redirection.

Input Image w/ 3D Prior (ours) w/o 3D Prior

Figure 6. Ablation on 3D face prior distillation. We generate
3D meshes with and without 3D prior. The result shows that the
model with 3D prior reconstructs the 3D shape of the input face
successfully while the model without without 3D prior fails to
capture the depth information of human head by generating a flat
face mesh. This result demonstrates that the chosen 3D GAN prior
can provide effective information on 3D face shape which improves
the final generation performance.

the model should modify only the geometry around the eye451
region; however, without specific geometric constraints, the452
model struggles to focus on the eye region alone. Instead, it453
tends to alter the entire face, leading to noticeable instability454
in the generated results. In our approach, we fuse the high-455
frequency features with the gaze embedding while keeping456
the geometric features unchanged. This enables the model to457
perform gaze redirection by adjusting only the appearance458
of the eye region, ensuring a stable face shape throughout459
the process.460

Ablation on 3D Face Prior Distillation. We conduct an461
ablation study on 3D face prior distillation and show the re-462
constructed 3D meshes in Fig. 6. Our model, leveraging 3D463
priors, clearly reconstructs 3D face shapes with high fidelity.464
In contrast, the mesh generated without 3D priors appears465
flat across the face, lacking significant depth information.466

Figure 7. Failure cases under challenging conditions. LiveGaze
demonstrates robust gaze redirection but struggles with low light-
ing and faces wearing glasses. When processing the images in a
dark environment, the model may incorrectly interpret the subject’s
identity. Additionally, glasses are challenging to reconstruct accu-
rately, often interfering with eye region generation. Nonetheless,
our model consistently redirects gaze correctly, underscoring its
effective gaze-redirecting capability.

4.5. Limitations 467

While LiveGaze is capable of generating photorealistic gaze- 468
redirected face images in real time, it faces challenges under 469
certain conditions, such as varying illumination and the pres- 470
ence of glasses. Failure cases are illustrated in Fig. 7. In 471
low-light environments, our model may mistakenly perceive 472
faces as belonging to different subjects with darker facial 473
tones. Additionally, its performance declines when process- 474
ing faces with glasses. As shown in the second row of Fig. 475
7, the model struggles to reconstruct glasses correctly, and 476
their presence interferes with the generation of the eye re- 477
gion. Despite these limitations, it is worth noting that our 478
model successfully redirects gaze correctly in both scenarios, 479
underscoring its robust gaze redirection capability. 480

5. Conclusion 481

We propose LiveGaze, a real-time 3D-aware gaze redirection 482
method from a single image. Our model achieves real-time 483
inference by employing an efficient triplane-based NeRF ar- 484
chitecture and distilling the prior knowledge from 3D GANs 485
into a lightweight module. Benefiting from the simple but 486
effective gaze fusion module and the dedicated choice of 487
fused features, our model realizes accurate gaze redirection 488
while maintaining superior image quality. With its excep- 489
tional real-time performance and high-quality generation, 490
our model holds great potential for numerous downstream 491
applications, particularly in scenarios with high real-time 492
requirements. While LiveGaze offers significant advantages, 493
its performance declines under challenging conditions like 494
varying lighting and the presence of glasses. Addressing 495
these challenges is reserved for future work. 496
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Figure 8. Additional visualization of generated images from ETH-
XGaze with our LiveGaze, ST-ED, HeadNeRF, and GazeNeRF.
The background is eliminated using face masks. Our model can
generate photo-realistic images with extensive details. In contrast,
ST-ED struggles to preserve identity information. HeadNeRF and
GazeNeRF face challenges in maintaining facial details.

6. Details of Data Pre-processing and Training497

The resolution of raw images in ETH-XGaze [46] is 6Kx4K.498
We first normalize the raw images using the method in [46]499
and get the normalized head poses and gaze directions. The500
normalized distance between the camera and the center of501
the face is fixed at 950mm and the focal length in the normal-502
ized camera projection matrice is set to 1600. To align the503
data format with Live3D [35] and EG3D [7], we resize the504
normalized images to 512x512 and estimate camera poses505
using the model in [11]. To apply our mask-guided 2D con-506
straint, we use the face parsing model [42] to segment the507
whole and the eye region. We use the detected landmarks508
[6] to do the segmentation when the face parsing model does509
not work when processing some challenging images.510

The personalized test set in ETH-XGaze includes 200511
labeled images for each subject. We split the personalized512
test set into an input group and a target group following513
GazeNeRF [33]. The input group contains 100 images for514
each subject and the target group includes the other 100515
images. We train our model with 80 subjects in the train set516
of ETH-XGaze first and then finetune the model with images517
from the input group for 10 epochs. We generate the images518
in the target group during evaluation.519

Figure 9. Additional visualization of generated images under novel
gazes and novel views. The upper part is the generated images
under novel gazes which are from left to right. The lower part
is the generated results under novel views. Our model generates
3D faces with controllable gazes from a single image, producing
photorealistic results across diverse head poses and gaze directions
while maintaining 3D and gaze consistency.

7. Additional Qualitative Results 520

In Fig. 8, we show additional qualitative results compar- 521
ing our model to the SOTA methods. All the models are 522
evaluated on the personalized test set of the ETH-XGaze 523
dataset. Our model generates images with superior quality 524
while ST-ED [49] encounters difficulties in preserving iden- 525
tity information and both HeadNeRF [15] and GazeNeRF 526
[33] struggle to retain facial details. 527

In Fig. 9, we show additional qualitative results of gen- 528
eration under novel gazes and novel views. Our model can 529
generate 3D faces with controllable gazes from a single in- 530
put image. It produces photorealistic face images across a 531
wide range of head poses and gaze directions. The results 532
under novel viewpoints demonstrate the model’s strong 3D 533
consistency throughout the generation process. Additionally, 534
its capability to produce consistent gaze images is validated 535
by the results under novel gaze directions. 536
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