
HENGFEI WANG, ZHONGQUN ZHANG, YIHUA CHENG, HYUNG JIN CHANG: DENERF 1

High-Fidelity Eye Animatable Neural
Radiance Fields for Human Face

Hengfei Wang
hxw080@student.bham.ac.uk

Zhongqun Zhang
zxz064@student.bham.ac.uk

Yihua ChengB

y.cheng.2@bham.ac.uk

Hyung Jin Chang
h.j.chang@bham.ac.uk

School of Computer Science
University of Birmingham
Birmingham, UK

Abstract

Face rendering using neural radiance fields (NeRF) is a rapidly developing research
area in computer vision. While recent methods primarily focus on controlling facial
attributes such as identity and expression, they often overlook the crucial aspect of mod-
eling eyeball rotation, which holds importance for various downstream tasks. In this
paper, we aim to learn a face NeRF model that is sensitive to eye movements from multi-
view images. We address two key challenges in eye-aware face NeRF learning: how
to effectively capture eyeball rotation for training and how to construct a manifold for
representing eyeball rotation. To accomplish this, we first fit FLAME, a well-established
parametric face model, to the multi-view images considering multi-view consistency.
Subsequently, we introduce a new Dynamic Eye-aware NeRF (DeNeRF). DeNeRF trans-
forms 3D points from different views into a canonical space to learn a unified face NeRF
model. We design an eye deformation field for the transformation, including rigid trans-
formation, e.g., eyeball rotation, and non-rigid transformation. Through experiments
conducted on the ETH-XGaze dataset, we demonstrate that our model is capable of
generating high-fidelity images with accurate eyeball rotation and non-rigid periocular
deformation, even under novel viewing angles. Furthermore, we show that utilizing the
rendered images can effectively enhance gaze estimation performance.

1 Introduction
Face rendering is an important task in computer vision and computer graphics. It is widely
demanded by applications such as virtual reality [16, 23, 25], digital human [6, 18, 21] and
CG film-making [2, 34, 41]. Conventional methods fit a parametric face model based on a
face template mesh [8, 22]. Generative adversarial networks (GAN) directly render photo-
realistic images with deep neural networks [1, 12, 13]. Recent research has incorporated the
Neural Radiance Fields (NeRF) [24] for face rendering. NeRF models encode 3D geometry
and exhibit great multi-view consistency that enables face rendering under novel viewpoints.
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Figure 1: The Dynamic Eye-aware Neural Radiance Field (DeNeRF) is designed to render
high-fidelity faces with animatable eyes using a set of multi-view images. It enables face
rending under novel view and eye pose. By leveraging DeNeRF, we are able to obtain pseudo
gaze labels from the model, which can be utilized to enhance gaze estimation methods.

Additionally, various previous works explore parametric face NeRF models [17], which en-
able the control of facial attributes in rendered images such as identity and expression.

While most face NeRF models focus on facial semantic attributes, they tend to overlook
the importance of controllable eye movement in face rendering. Eye movement can enhance
image realism and is critical for multiple downstream tasks. However, the eyeball is located
inside the face and incompletely visible in face images. It is difficult to determine the precise
3D eyeball rotation and position based on only face images. Furthermore, the eyeball rota-
tion is related to geometric architecture, which means the model should be rotation-aware.
Eyeball rotation also leads to non-rigid deformation such as the periocular deformation. Pre-
vious methods perform the rotation in feature space with gaze directions [31, 49]. However,
it is also non-trivial to obtain accurate gaze directions from images and such approaches
often result in low-quality rendered images.

In this paper, we propose a novel approach called Dynamic Eye-aware NeRF (DeNeRF).
DeNeRF learns a dynamic face NeRF model from multi-view images, enabling face ren-
dering with unseen eyeball and head poses. We address two challenges in eye-aware NeRF
learning: effectively capturing eyeball rotation and constructing a suitable manifold for rep-
resenting such rotation. To capture eyeball rotation, we begin by fitting a well-established
parametric face model, FLAME [22], to the multi-view face images. FLAME is originally
designed for face tracking from a single face image, and we modify the fitting process to
account for consistency across multi-view images. This allows us to obtain parameters such
as eyeball and head pose, which we then use for DeNeRF learning.

We further define a unified canonical space in DeNeRF. Given a pixel in the observed
images, we sample 3D positions based on view directions in the observation space. We
transform the 3D positions from the observation space into the canonical space with given
poses. We design an eye deformation field for the transformation, including rigid transfor-
mation ( e.g., eyeball rotation and head rotation) and non-rigid transformation. We input the
3D positions in the canonical space into a NeRF model and render the pixel for alignment.
To reduce the computational costs, we adopt a patch-based sampling approach [32]. We
sample patches in images for alignment in each iteration. To enforce realistic eye region, we
generate an eye mask for each image and enlarge the sampling ratio in the eye region.

Overall, our contributions are three-fold:

• We propose DeNeRF which learns a dynamic face NeRF model from multi-view im-
ages. To capture the eyeball pose accurately, we design a new fitting process for the
FLAME model, ensuring consistency across multiple views.
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• We define a unified canonical space to construct a rotation-aware manifold. We trans-
form 3D positions in the observation space into a canonical space based on an eye
deformation field, including both rigid and non-rigid transformations. The DeNeRF is
learned in the canonical space.

• DeNeRF enables high-fidelity face rendering under novel eyeball poses and head
poses. Extensive experiments prove the rendered images can effectively enhance the
performance of the downstream gaze estimation task.

2 Related Work
Neural Radiance Field. NeRF [24] proposed to learn implicit neural representations of a
static scene from multi-view images, showing high-quality novel view synthesis. It models
the continuous radiance field of a static scene by utilizing a mapping function that takes
both a 3D spatial point x and view direction d as input, and outputs the corresponding RGB
color c and volume density σ values. A standard NeRF is parameterized with a Multi-Layer
Perceptron (MLP) as

Hθ : (γ(x),γ(d))→ (c,σ), (1)

where θ represents the parameters of the network and γ refers to a positional encoding func-
tion [24, 35] that transforms x and d into a high-dimensional space. Different from con-
ventional generative models, NeRF is a 3D-aware model and represents 3D object/scene via
implicit neural representations. Novel views are generated from the implicit neural repre-
sentation with volume rendering. Further explorations [11, 17, 26, 28, 29] adapt NeRF to
represent dynamic scenes. Hong et al. [17] acquire the latent codes of disentangled facial
attributes from 3D morphable model. They control the code to render images with different
poses and identities. Some methods also use NeRF for talking face generation [7, 14, 42].
They usually overlook the controllable eye movement in face rendering.

Eye Image Synthesis. The precise manipulation of realistic eye imagery has proven
essential across multiple domains of application. Qin et al. [30] reconstruct 3DMM face
model from multi-view images. They can rotate a virtual camera to synthesize images in
different camera poses but cannot rotate the eyeball. Wood et al. [39] build a virtual 3D
morphable eye model with computer graphic algorithms. They can synthesize eye images
with arbitrary gaze directions[38, 39, 40]. However, their synthetic images are usually not
realistic enough. Recently, generative model shows great potential in image generation.
Compared to 3D morphable model, generative model can generate more realistic images.
Some methods use generative model to generate realistic eye images [15, 27, 33, 44]. He
et al. [15] utilize GAN for gaze redirection task. They can synthesize large-scale gaze data
by performing gaze redirection task on one eye image. Ruzzi et al. [31] uses NeRF for gaze
redirection tasks. They train a NeRF model based on given gaze directions and perform
rotation in feature space, which results in low-quality rendered images.

3 Methodology

3.1 Multi-view Face Tracking
We first perform multi-view face tracking to acquire eyeball poses for training. We use the
well-known parametric face model FLAME [22] for face tracking. FLAME model fits facial
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parameters (such as pose and expression) from a single face image. We modify the fitting
process for the multi-view images by projecting the fitted face model into multiple views and
adding consistency loss for all views.

In practice, we input multi-view images and corresponding camera poses to the face
tracker. We detect face landmarks, pupil centers, and face masks in each image [3, 43],
where face masks are used to remove the background in the images. We initialize the textured
FLAME face model with zero parameters and project the face model to all views. We render
face images and perform pixel-wise alignment in the face appearance. Note that, face masks
are used to ensure the alignment is performed in the face region. We can also obtain face
landmarks and pupil centers from the FLAME model. We align them with the detected
results for structure consistency. We use L1 loss for all alignments where we denote them as
face appearance loss Lappear, facial landmark loss L f ace and pupil center loss Lpupil . Overall,
we optimize the multi-view face tracker by minimizing

Ltracking =

(
N

∑
i=1

(
αLi

pupil +βLi
f ace + γLi

appear
))

/N, (2)

where α,β ,γ are hyper-parameters, and we empirically set them as 10, 5, and 30. N is the
number of views which is 13 in our experiment. We show the details of the loss function and
fitting result in the supplementary material.

After fitting the FLAME model, we obtain facial parameters as the outcome. For DeN-
eRF Learning, we specifically choose four poses, namely two for the eyeballs, one for the
jaw, and one for the neck. These poses are denoted as pi = {Ri, ti}, where i ranges from 1 to
4. Collectively, we refer to all four poses as p.

3.2 Dynamic Eye-aware Neural Radiance Field
The input of DeNeRF contains multi-view images and poses p as well as camera poses.
Conventional NeRF-based methods implicitly learn a static geometric model. Although they
can render images under novel views, they cannot control the content in the 3D model.

Our key idea is to learn a unified face NeRF model in the canonical space. Given an
eyeball model and its pose, it is easy to rotate the eyeball from the observation space into
the canonical space, and we can learn a unified eyeball model in the canonical space. We
perform the similar operation in DeNeRF. We newly design an eye deformation field on both
rigid and non-rigid transformations. The eye deformation field allows us to transform a point
from the observation space into the canonical space. We obtain the color and density of the
point in the canonical space based on Eq. (1) and learn a unified NeRF model in the canonical
space.

Eye Deformation Field. We aim to learn a deformation field which transforms a point
xo in the observation space into the canonical space. Intuitively, we would first rotate the
3D point based on the head pose, and then rotate it based on the eyeball pose if this point
is in the eye region. Unfortunately, this approach is not feasible due to the absence of an
explicit mesh model. To address this issue, we propose a solution that involves applying
various transformations, including head rotation and eyeball rotation, and combining them
using learnable weights [20]:

Trigid (xo, p) =
4

∑
i=1

wi
o(xo)(Rixo + ti) . (3)
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Figure 2: Overview of DeNeRF model which specializes in creating high-fidelity face
images that are aware of the eyes. It achieves this by training on multi-view images, and
leveraging parametric model-based face tracking to establish multi-view consistency. From
this data, DeNeRF fits a face model that includes poses for the eyeballs, jaw, and neck. To
facilitate the learning process, DeNeRF defines a canonical space and learns a unified model
within it. Additionally, it introduces an eye deformation field that can transform points from
observation space into the canonical space. This field is composed of both rigid and non-
rigid transformation modules, enabling it to handle the complexity of eye movement and
deformation.

Note that we first convert all poses Ri, ti into a common coordinate system to facilitate the
summation of transformed results. Instead of directly estimating wi

o, we learn wi
c as described

in [37], from which wi
o can be computed:

wi
o(xo) =

wi
c (Rixo + ti)

∑
4
k=1 wk

c (Rkxo + tk)
. (4)

This process stabilizes the model and decreases the probability of collapse.
Trigid exclusively deals with rigid transformations. However, facial appearance involves

non-rigid transformations, such as periocular deformation. To address this, we introduce
a non-rigid transformation field, denoted as TNR, which is implemented as an MLP. This
MLP generates an offset ∆x to augment the output of Trigid . Additionally, we incorporate
pose information p as supplementary inputs to the MLP. Consequently, the complete eye
deformation field can be expressed as follows:

xc = x̂+TNR(x̂, p), (5)

where x̂ = Trigid(xo, p) and xc represents the position in the canonical space. Finally, we
input the position xc into a vanilla NeRF to obtain the color and density as Eq. (1).

3.3 Training
We train DeNeRF to render 512×512 pixels images. DeNeRF is trained with a photometric
reconstruction loss in an end-to-end manner. To handle the high computational costs, we
adopt a patch-based sampling approach [32]. We randomly sample six patches with size
32 × 32 pixels from input images and 128 points for each ray. We use LPIPS loss [45]
(LLPIPS ) and MSE loss (LMSE) for training as

LDeNeRF = LLPIPS (P, P̂)+λLMSE(P, P̂), (6)
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where P is the image patch and P̂ is the ground truth. We set λ = 0.2 in the training.
Eye-mask Guided Sampling. To address the issue of the eye region being too small

compared to the rest of the face, we introduce an eye mask [43] to guide the ray sampling in
DeNeRF. Specifically, we assign a larger sampling ratio to the eye region than to other facial
parts, thus directing more attention to the eye region.

For training, we utilize the Adam optimizer with a learning rate of 5× 10−4 and expo-
nential learning decay. The sample ratio is set to 0.8, while the eye region sample ratio is set
to 0.5 during training. Each subject is trained for 400K epochs using four A100 GPUs.

4 Experiments

4.1 Setup

Data Preparation. We select ETH-XGaze [48] for experiments since the dataset contains
rich eye movement. ETH-XGaze is a large-scale gaze estimation dataset collected from 110
subjects with 18 cameras. The dataset provides over one million high-resolution images. We
crop the face patch from raw images and resize it into 512×512 for training. Our model is
trained based on a sequence of multi-view images. We select 9 frames which roughly cover
the gaze in nine different directions for each subject. We remove the view under extreme
pose and each frame finally provides 13-view images, i.e., we use 9×13 images for training
on one subject.
Evaluation Metrics. We conduct qualitative and quantitative comparison to demonstrate
image quality, where SSIM [36], PSNR, and LPIPS [45] are reported for quantitative com-
parison. We also show the advantage of our method in a downstream task. We render images
for data augmentation in gaze estimation task. We use angular degree error for gaze estima-
tion metric [5].

4.2 Face Rendering under Novel Pose and Gaze

We present the qualitative results for image generation under novel gazes and head poses in
Fig. 3. The image on the left showcases the rendered images under novel head poses. Our
DeNeRF model excels in generating high-fidelity face images while maintaining multi-view
consistency. The skin and eye textures are clearly visible with vivid details, and the hair
is accurately reconstructed. Surprisingly, the last two rows in the image demonstrate our
model’s remarkable generative ability in reconstructing subjects wearing glasses. It shows
that our DeNeRF can effectively organize the multi-view information from sparse views for
high-fidelity 3D face reconstruction. The image on the right showcases the eye animation
generated under novel gaze directions. The animation displays a natural and continuous
eye movement despite being trained only on nine sparse gaze directions. It demonstrates
that our model has successfully learned to accurately represent the rotation of the eyeball.
This is attributed to the precise eyeball pose achieved through multi-view face tracking using
FLAME, as well as the deformation strategy based on canonical space. They enable us to
integrate all information from multi-view images. Overall, the results clearly demonstrate
the effectiveness of our model in both face reconstruction and eye animation.
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InputRendering for Novel Head PoseInput Animation for Novel Gaze

Figure 3: Face rendering under novel gaze and novel head poses. We train DeNeRF with
multi-view images from only nine frames. The left images show the rendering under novel
head pose. DeNeRF preserves great multi-view consistency. We also use the DeNeRF to
render images under novel gaze in the right image. DeNeRF is a parametric NeRF model.
We can directly change the eyeball pose to generate images under novel gaze. DeNeRF
generates high-fidelity face images in a large range of head pose and gaze direction. This is
the key advantage of DeNeRF.

4.3 Comparison with Face Rendering Methods
We conduct a comprehensive comparison of our method with the SOTA methods in 2D and
3D face rendering with eye animation (STED [49] and GazeNeRF [31]) and a NeRF-based
face rendering approach called HeadNeRF [17], which can be adapted for eye animation.
STED proposes an encoder-decoder structure to automate the disentanglement of gaze direc-
tion and head pose. GazeNeRF is a 3D-aware gaze redirection model that takes multi-view
images and gaze labels as input and allows control over eye deformation via gaze input.
HeadNeRF is a NeRF-based method for high-fidelity facial imaging and can be extended
to include gaze direction as additional input for eye animation. Our comparison primarily
focuses on the quality of rendered images, particularly in the eye region.

Methods SSIM ↑ PSNR ↑ LPIPS ↓

STED [49] 0.726 17.279 0.306
HeadNeRF [17] 0.718 15.262 0.300
GazeNeRF [31] 0.728 15.322 0.297

Ours 0.732 19.144 0.265

Table 1: We show the quantitative comparison
between DeNeRF and other SOTA methods
in terms of rendered image quality. DeNeRF
shows significant improvement in all metrics.

Fig. 4 shows the qualitative compari-
son with the SOTA methods. All of the
methods are capable of face reconstruc-
tion. However, the faces generated by
STED are blurry. Although the results from
HeadNeRF and GazeNeRF are better than
STED, they still struggle with achieving a
natural skin and hair look. In contrast, our
model not only produces a photo-realistic
eye region but also accurately reconstructs
other facial features and hair. In the region
surrounding the eye, our method produces
sharper images than other methods and the
finer details of the periocular region, such as eyebrows and eyelids are clearly visible.

In addition, we show the quantitative results in Table 1. It shows that our method outper-
forms GazeNeRF by a large margin which supports the qualitative results above. GazeNeRF
learns to map the latent code space onto various 3D faces. In contrast, DeNeRF defines a
canonical space and warps each point in the observation space to a static canonical space
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GT Ours STED HeadNeRF GazeNeRF
STED HeadNeRF GazeNeRF

GT Ours STED HeadNeRF GazeNeRF

Figure 4: We show the comparison with face rendering methods. We report the result of
compared methods from the SOTA face rendering method [31]. STED and GazeNeRF are
designed for gaze redirection. They perform rotation in the feature space which degrades the
quality of rendering images. HeadNeRF is adapted for eye animation using gaze direction as
additional inputs. It is obvious that all compared methods have artifacts in the rendering im-
ages, while our method renders high-fidelity face images. This demonstrates the advantage
of DeNeRF.

where the deformation is handled by explicit face poses and learned linear blend skinning
weights. Such a design provides the neural network with a clear objective of learning the
static canonical space, which makes training much easier.

It is worth noting that our model is trained on only 13 views from 9 frames, whereas
GazeNeRF is first pre-trained on all available 80 subjects in ETH-XGaze before being fine-
tuned using all 18 available views from 100 frames. Despite the vast difference in the amount
of training data, our model significantly outperforms GazeNeRF in rendered image quality.

4.4 Improving Gaze Estimation Performance

Our method is capable of rendering face images from novel views and eyeball poses. Fur-
thermore, we can generate pseudo-labels for the rendered images based on eyeball rotation
and head pose. The eyeball rotation is estimated through multi-view face tracking, while the
head pose can be derived from camera pose. By combining the eyeball rotation and head
pose, we can accurately calculate the final gaze direction.

EyeDiap [10] MPIIFace [47] RT-Gene [9] Gaze360 [19]

× 41.829 36.441 42.172 17.709√
34.074 28.567 34.632 16.351

Table 2: We use rendering images to enhance gaze estima-
tion performance. We train GazeTR in the four datasets
and test it in the ETH-XGaze. The checkmark means we
add rendering images into training set.

To demonstrate the capac-
ity of our model in enhancing
gaze estimation, we conducted
experiments on four renowned
gaze datasets including Eye-
Diap [10], MPIIFace [46], RT-
Gene [9], and Gaze360 [19].
Due to the scarcity of anno-
tated images per subject in
the test person specific set of
ETH-XGaze, we randomly select seven subjects from the train set of ETH-XGaze for the
experiment. We train our model on nine frames for each subject and then generate 324 im-
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w/o ES w/o LIPIS Eye Periocular
Deformation

GT Full w/o ES w/o LIPIS Periocular Movement

Figure 5: Ablation study on eye mask guided sampling (ES) and LPIPS loss. The result
shows both ES and LPIPS loss improve the image quality in eye region. We design the
non-rigid transformation part in the eye deformation field. The right figure demonstrates the
effectiveness of the non-rigid transformation. It is obvious that our model accurately capture
the periocular movement. This proves the advantage of the eye deformation field.

ages under random 36 head poses and nine gaze directions. These newly generated data were
incorporated into the four gaze datasets to create their corresponding augmented version. Fi-
nally, we evaluated the performance of the augmented versions on the annotated data of each
subject. We trained the state-of-the-art gaze estimator, GazeTR [4], separately on each of the
four original datasets and their augmented versions for comparison.

We present the gaze error in Table 2. The rendering images bring significant improve-
ments on the EyeDiap, MPIIFace, and RT-Gene datasets, with gains of 18.54%, 21.61%,
and 17.88%, respectively. This improvement can be attributed to the ability of DeNeRF
to generate a wider range of gaze and head poses than those present in the narrow dataset.
This increased variation allows for more accurate gaze and head pose estimations. Despite
Gaze360 already having a large gaze and head pose range, our augmented dataset still out-
performs it with a 7.67% improvement. This result further highlights the potential of our
method for the gaze estimation task.

4.5 Ablation Studies
We conduct ablation studies on eye mask guided sampling and LPIPS loss, as seen in Fig. 5.
Our model without eye mask guided sampling generates an unnatural eyeball that is nearly
completely black. The iris, which is the most crucial semantic information for gaze, is
difficult to identify. In contrast, our full model produces a photo-realistic eyeball with a clear
boundary between the iris and sclera. The effectiveness of our eye mask guided sampling
can be attributed to its ability to address the deformation issue of small regions. Additionally,
when our model is not trained with LPIPS loss, the rendered image appears blurry not only
in the eye region but also in other face parts. In comparison, our full model produces sharper
details in the rendered image, emphasizing the importance of the LPIPS loss for the image
quality of our model. On the right image, we display the periocular movement as the subject
look from bottom to top. It demonstrates that our model is capable of handling non-rigid
periocular deformation.

5 Conclusion
In this paper, we present a novel dynamic eye-aware NeRF that allows for facial rendering
from different perspectives and eye poses. DeNeRF utilizes multi-view images to train a
NeRF model of the face. First, we perform face tracking on the multi-view images to capture

Citation
Citation
{Cheng and Lu} 2022



10 HENGFEI WANG, ZHONGQUN ZHANG, YIHUA CHENG, HYUNG JIN CHANG: DENERF

the eye pose. Then, we fit a parametric 3D face model, FLAME, considering the multi-
view consistency. Next, we construct a rotation-aware manifold to model the rotation of the
eyeball. We define a canonical space for DeNeRF and transform 3D points from different
observation spaces into this space. Finally, we learn a unified face NeRF model on the
canonical space while considering an eye deformation field for the transformation. The eye
deformation field accounts for rigid transformation, including eyeball rotation, and non-rigid
transformation, such as periocular deformation. We evaluate our method on the ETH-XGaze
dataset and show that it can render high-fidelity face images from novel viewpoints and eye
poses. We also mix our rendered images with the original training set for data augmentation,
which further improves performance. In future work, we aim to reduce the requirement for
multi-view images and lower computational costs.
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